Home > G. Tumoral pathology > Liquid biopsy > Circulating tumor cells > CTCs by cancer > circulating tumor cells in breast cancer

circulating tumor cells in breast cancer

Saturday 25 February 2012

CTCs in breast cancer

Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis.

CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease.

Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential.

Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation.

Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment.

CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis. (24240660)

Breast cancer

In breast cancer, the majority of patients present with local disease, and the primary lesions are generally removed by surgery prior to the development of clinically detectable metastases.

Circulating tumor cells (CTCs) represent cells that have already escaped the primary tumor site and thus may be an appropriate candidate as biomarkers. These cells have a high level of agreement (82%–89%) at the level of HER2 status with the primary tumor; however, concordances for ER and PR status are lower (41% and 45%, respectively). These observations suggest that CTCs may act as a proxy for the subset of cells within the primary tumor capable of leading to disease recurrence.

Interestingly, characterization of CTCs shows that subpopulations of these cells are enriched for stem cell and EMT markers, suggesting that they arise from specific subgroups within the tumor. Further investigations of the correlation between markers of CTCs and those of distant metastases are expected to clarify the origin of CTCs and how their features influence disease course.

Brain metastasis

Brain metastatic breast cancer (BMBC) is uniformly fatal and increasing in frequency. Despite its devastating outcome, mechanisms causing BMBC remain largely unknown. The mechanisms that implicate circulating tumor cells (CTCs) in metastatic disease, notably in BMBC, remain elusive.

In epithelial cell adhesion molecule (EpCAM)–negative CTCs, it has been identified a potential signature of brain metastasis comprising “brain metastasis selected markers (BMSM)” HER2+/EGFR+/HPSE+/Notch1+. (23576814)

These CTCs—which are not captured by the CellSearch platform because of their EpCAM negativity—were analyzed for cell invasiveness and metastatic competency in vivo. CTC lines expressing the BMSM signature were highly invasive and capable of generating brain and lung metastases when xenografted in nude mice. (23576814)

Notably, increased brain metastatic capabilities, frequency, and quantitation were detected in EpCAM− CTCs overexpressing the BMSM signature. The presence of proteins of the BMSM CTC signature was also detected in the metastatic lesions of animals. (23576814)


In breast cancer, ERBB2 is one of the most prominent targets for systemic therapy (Wan et al, 2013). Currently, all patients are stratified to trastuzumab (or other anti-ERBB2 therapies) by primary tumor tissue analysis only.

Recent reports, however, have shown that ERBB2-positive CTCs can be detected also in patients with ERBB2-negative primary tumors (Riethdorf et al, 2010; Ignatiadis et al, 2011; Hartkopf et al, 2012), suggesting that there might exist additional patients that could benefit from ERBB2-directed therapies.

Ongoing clinical studies (e.g., DETECT III (NCT01619111) trial in Germany and CTC-TREAT (NCT01548677) trial in Europe) will reveal whether the ERBB2 status of CTCs may predict response to ERBB2-directed therapies (Bidard et al, 2013a,b).

Another example for the use of CTCs as predictive biomarkers is the presence of ER-negative CTCs in breast cancer patients with ER-positive primary tumors (Babayan et al, 2013).

ER is the most common therapeutic target in breast cancer, and 70–80% of patients have ER-positive primary tumors. However, ER-negative CTCs that may have escaped hormonal therapy to block ER-mediated growth frequently occur in these patients.

Open references

- Pantel K, 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309663/

- Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells. Charpentier M, Martin S. Cancers (Basel). 2013 Nov 14;5(4):1545-65. doi : 10.3390/cancers5041545 PMID: 24240660 [Free]

- The identification and characterization of breast cancer CTCs competent for brain metastasis. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, Goodman JC, Groves MD, Marchetti D. Sci Transl Med. 2013 Apr 10;5(180):180ra48. doi : 10.1126/scitranslmed.3005109 PMID: 23576814 [Free]


- Bidard FC, Vincent-Salomon A, Gomme S, Nos C, de RY, Thiery JP, Sigal-Zafrani B, Mignot L, Sastre-Garau X, Pierga JY. Disseminated tumor cells of breast cancer patients: a strong prognostic factor for distant and local relapse. Clin Cancer Res. 2008;14:3306–3311. [http://www.ncbi.nlm.nih.gov/pubmed/18519757]

- Bidard FC, Fehm T, Ignatiadis M, Smerage JB, Alix-Panabieres C, Janni W, Messina C, Paoletti C, Muller V, Hayes DF, et al., editors. Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev. 2013a;32:179–188. [PMC free article] [http://www.ncbi.nlm.nih.gov/pubmed/23129208]

- Bidard FC, Pierga JY, Soria JC, Thiery JP. Translating metastasis-related biomarkers to the clinic–progress and pitfalls. Nat Rev Clin Oncol. 2013b;10:169–179. [http://www.ncbi.nlm.nih.gov/pubmed/23381003]

- Bidard FC, Peeters DJ, Fehm T, Nole F, Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz JA, Stebbing J, et al., editors. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15:406–414. [http://www.ncbi.nlm.nih.gov/pubmed/24636208]

- Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, Herold CI, Marcom PK, George DJ, Garcia-Blanco MA. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007. [PMC free article] [http://www.ncbi.nlm.nih.gov/pubmed/21665936]

- Babayan A, Hannemann J, Spotter J, Muller V, Pantel K, Joosse SA. Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients. PLoS One. 2013;8:e75038. [PMC free article] [http://www.ncbi.nlm.nih.gov/pubmed/24058649]

- Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bauerle T, Wallwiener M, et al., editors. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31:539–544. [http://www.ncbi.nlm.nih.gov/pubmed/23609047]

- Bartkowiak K, Wieczorek M, Buck F, Harder S, Moldenhauer J, Effenberger KE, Pantel K, Peter-Katalinic J, Brandt BH. Two-dimensional differential gel electrophoresis of a cell line derived from a breast cancer micrometastasis revealed a stem/progenitor cell protein profile. J Proteome Res. 2009;8:2004–2014. [http://www.ncbi.nlm.nih.gov/pubmed/19714817]


- Prognostic Relevance of Viable Circulating Tumor Cells Detected by EPISPOT in Metastatic Breast Cancer Patients. Ramirez JM, Fehm T, Orsini M, Cayrefourcq L, Maudelonde T, Pantel K, Alix-Panabières C. Clin Chem. 2014 Jan;60(1):214-21. doi : 10.1373/clinchem.2013.215079 PMID: 24255082


- Circulating Tumor Cells Count and Morphological Features in Breast, Colorectal and Prostate Cancer. Ligthart ST, Coumans FA, Bidard FC, Simkens LH, Punt CJ, de Groot MR, Attard G, de Bono JS, Pierga JY, Terstappen LW. PLoS One. 2013 Jun 27;8(6):e67148. Print 2013. PMID: 23826219 [Free]

- Clinical challenges in the molecular characterization of circulating tumour cells in breast cancer. Lianidou ES, Mavroudis D, Georgoulias V. Br J Cancer. 2013 Jun 25;108(12):2426-32. doi : 10.1038/bjc.2013.265 Epub 2013 Jun 11. Review. PMID: 23756869

- Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. Gruber I, Landenberger N, Staebler A, Hahn M, Wallwiener D, Fehm T. Anticancer Res. 2013 May;33(5):2233-8. PMID: 23645781


- Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Joosse SA, Hannemann J, Spötter J, Bauche A, Andreas A, Müller V, Pantel K. Clin Cancer Res. 2012 Feb 15;18(4):993-1003. Epub 2012 Jan 6. PMID: 22228641

- Punnoose EA, et al. Molecular biomarker analyses using circulating tumor cells. PLoS One. 2010;5(9):e12517. PMID: 20838621

- Munzone E, et al. Changes of HER2 status in circulating tumor cells compared with the primary tumor during treatment for advanced breast cancer. Clin Breast Cancer. 2010;10(5):392–397. PMID: 20920984

- Aktas B, et al. Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecol Oncol. 2011;122(2):356–360. PMID: 21605893

- Lu J, et al. Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patients. Int J Cancer. 2010;126(3):669–683. PMID: 19662651

- Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11(4):R46. PMID: 19589136

From doi : 10.1126/scitranslmed.3005109

1. Talmadge JE, Fidler I. AACR Centennial Series: The biology of cancer metastasis. Cancer Res. 2010;70(14):5649–69. [PMC free article] [PubMed]
2. Lin NU, Winer EP. Brain metastasis: the HER2 paradigm. Clin. Cancer Res. 2007;13(6):1648–55. [PubMed]
3. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF. Circulating tumor cells, disease progression and survival in metastatic breast cancer. New Eng J Med. 2004;351:781–91. [PubMed]
4. Alix-Panabieres C, Schwarzenbach H, Pantel K. Circulating tumor cells and circulating tumor DNA. Annu. Rev. Med. 2012;63:199–215. [PubMed]
5. Mego M, De Giorgi U, Dawood S, Wang X, Valero V, Andreopoulou E, Handy B, Ueno NT, Reuben JM, Cristofanilli M. Characterization of metastatic breast cancer patients with nondetectable circulating tumor cells. Int J Cancer. 2011;129:417–23. [PubMed]
6. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson M, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–4. [PMC free article] [PubMed]
7. Yu M, Stott S, Toner M, Maheswaran S, Haber B. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 2011;192(3):373–82. [PMC free article] [PubMed]
8. Pecot CV, Bischoff FZ, Mayer JA, Wong KL, Pham T, Bottsford-Miller J, Stone RL, Lin YG, Jaladurgam P, Roh JW, Goodman BW, Merritt WM, Pircher TJ, Mikolajczyk SD, Nick AM, Celestino J, Eng C, Ellis LM, Deavers MT, Sood AK. A novel platform for detection of CK+ and CK− CTCs. Cancer Discovery. 2011;1(7):580–6. [PMC free article] [PubMed]
9. Sieuwerts AM, Kraan J, Bolt J, van der Spoel P, Elstrodt F, Schutte M, Martens JW, Gratama JW, Sleijfer S, Foekens JA. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst. 2009;101:61–6. [PMC free article] [PubMed]
10. Königsberg R, Obermayr E, Bises G, Pfeiler G, Gneist M, Wrba F, de Santis M, Zeillinger R, Hudec M, Dittrich C. Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncol. 2011;50:700–10. [PubMed]
11. Harrell JC, Prat A, Parker JS, Fan C, He X, Carey L, Anders C, Ewend M, Perou CM. Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse. Breast Cancer Res Treat. 2012;132(2):523–35. [PMC free article] [PubMed]
12. Joosse SA, Hannemann J, Spotter J, Bauche A, Andreas A, Muller V, Pantel K. Changes in keratin expression during metastatic progression of breast cancer: Impact on the detection of circulating tumor cells. Clin Cancer Res. 2012;18(4):993–1003. [PubMed]
13. Mego M, Mani SA, Cristofanilli M. Molecular mechanisms of metastasis in breast cancer clinical applications. Nat Rev Clin Oncol. 2010;7:693–701. [PubMed]
14. Pretlow TG, Schwartz S, Giaconia JM, Wright AL, Grimm HA, Edgehouse NL, Murphy JR, Morkowitz SD, Jamison JM, Summers JL, Hamlin CR, MacLennan GT, Resnick MI, Pretlow TP, Connell CF. Prostate cancer and other xenografts from cells in peripheral blood of patients. Cancer Res. 2000;60:4033–6. [PubMed]
15. Ameri K, Luong R, Zhang H, Powell AA, Montgomery KD, Espinosa I, Bouley DM, Harris AL, Jeffrey SS. Circulating tumor cells demonstrate an altered response to hypoxia and an aggressive phenotype. Br J Cancer. 2010;102:561–9. [PMC free article] [PubMed]
16. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, Digumarthy S, Muzikansky A, Irimia D, Settleman J, Tompkins RG, Lynch TJ, Toner M, Haber DA. Detection of mutations in EGFR in circulating lung-cancer cells. New Engl. J Med. 2008;359:366–77. [PMC free article] [PubMed]
17. Katz RL, He W, Khanna A, Fernandez RL, Zaidi TM, Krebs M, Caraway NP, Zhang HZ, Jiang F, Spitz MR, Blowers DP, Jimenez CA, Mehran RJ, Swisher SG, Roth JA, Morris JS, Etzel CJ, El-Zein R. Genetically abnormal circulating cells in lung cancer patients: an antigen independent fluorescence in situ hybridization – based control study. Clin Cancer Res. 2010;16(15):3976–87. [PMC free article] [PubMed]
18. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67. [PMC free article] [PubMed]
19. McGowan PM, Simedrea C, Ribot EJ, Foster PJ, Palmieri D, Steeg PS, Allan AL, Chambers AF. Notch1 inhibition alters the CD44hi/CD24lo population and reduces formation of brain metastases from breast cancer. Mol Cancer Res. 2011;9(7):834–44. [PMC free article] [PubMed]
20. Hirose H, Ishii H, Mimori K, Ohta D, Ohkuma M, Tsujii H, Saito T, Sekimoto M, Doki Y, Mori M. Notch pathway as candidate therapeutic target in Her2/Neu/ErbB2 receptor-negative breast tumors. Oncol Rep. 2010;1:35–43. [PubMed]
21. Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM, Kurek R, Vega-Valle E, Feigenbaum L, Halverson D, Vortmeyer AO, Steinberg SM, Aldape K, Steeg PS. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res. 2007;67:4190–98. [PubMed]
22. Rimawi MF, Shetty PB, Weiss HL, Schiff R, Osborne K, Chamness GC, Elledge RM. EGFR expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer. 2010;116(5):1234–46. [PMC free article] [PubMed]
23. Fehm T, Müller V, Aktas B, Janni W, Schneeweiss A, Stickeler E, Lattrich C, Löhberg CR, Solomayer E, Rack B, Riethdorf S, Klein C, Schindlbeck C, Brocker K, Kasimir-Bauer S, Wallwiener D, Pantel K. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Br Cancer Res and Treat. 2010;124(2):403–12. [PubMed]
24. Zhang L, Sullivan P, Suyama J, Marchetti D. Epidermal growth factor-induced heparanase nucleolar localization augments DNA topoisomerase I activity in brain metastatic breast cancer. Mol Cancer Res. 2010;8(2):278–90. [PubMed]
25. Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res. 2011;71(3):645–54. [PMC free article] [PubMed]
26. Ridgway LD, Wetzel M, Epstein A, Marchetti D. Heparanase - induced GEF-H1 signaling regulates the cytoskeletal dynamics of brain metastatic breast cancer cells. Mol Cancer Res. 2012;10(6):689–702. [PubMed]
27. Li X, Lewis MT, Huang J, Gutierrez C, Osborne KC, Wu M, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC. Intrisic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9. [PubMed]
28. Tarin D. Inappropriate gene expression in human cancer and its far-reaching biological and clinical significance. Cancer Metastasis Rev. 2012;31(1-2):21–39. [PubMed]
29. Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O’Meara S, Santarius T, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Hunter C, Jenkinson A, Jones D, Kosmidou V, Lugg R, Menzies A, Mironenko T, Parker A, Perry J, Raine K, Richardson D, Shepherd R, Small A, Smith R, Solomon H, Stephens P, Teague J, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Reinhold W, Weinstein JN, Stratton MR, Futreal PA, Wooster R. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol. Cancer Ther. 2006;5(11):2606–12. [PMC free article] [PubMed]
30. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, Reichert M, Beatty GL, Rustgi AK, Vonderheide RH, Leach SD, Stanger BZ. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148:349–61. [PMC free article] [PubMed]
31. Dominici M, Blanc Le K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. [PubMed]
32. Cohen-Kaplan V, Dowek I, Naroditsky I, Vlodavski I, Ilan N. Heparanase augments epidermal growth factor receptor phosphorylation: correlation with head and neck tumor progression. Cancer Res. 2008;68(24):10077–85. [PMC free article] [PubMed]
33. Fonsatti E, Jekunen AP, Kairemo KJA, Coral S, Snellman M, Nicotra MR, Natali PG, Altomonte M, Maio M. Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. Clin Cancer Res. 2000;6:2037–43. [PubMed]
34. Ostapkowicz A, Inai K, Smith L, Kreda S, Spychala J. Lipid rafts remodeling in estrogen receptor-negative breast cancer is reversed by histone deacetylase inhibitor. Mol Cancer Ther. 2006;5(2):238–45. [PubMed]
35. Bos DP, Zhang XH-F, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijer MJ, Gerald WL, Foekens JA. Massague J Genes that mediate breast cancer metastasis to brain. Nature. 2009;459(7249):1–8. [PMC free article] [PubMed]
36. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, ESterni B, Houvenaeghel G, Extra J-M, Bertucci F, Jacquemier J, Xerri L, Dontu G, Stassi G, Xiao Y, Barsky SH, Birnbaum D, Viens P, Wicha MS. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2009;16(1):45–55. [PMC free article] [PubMed]
37. Yatim A, Benne C, Sobhian B, Laurent-Chabalier L, Deas O, Judde J-G, Lilere J-D, Levy Y, Benkirane M. NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Cell. 2012;48:445–58. [PMC free article] [PubMed]
38. Paik S, Kim C, Wolmark N. HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med. 2008;358:1409–11. [PubMed]
39. Perez EA, Reinholz MM, Hillman DW, Hillman DW, Tenner KS, Schroeder MJ, Davidson NE, Martino S, Sledge GW, Harris LN, Gralow JR, Dueck AC, Ketterling RP, Ingle JN, Lingle WL, Kaufman PA, Visscher DW, Jenkins RB. HER2 and chromosome 17 effect on patient outcome in the N9831 adjuvant trastuzumab trial. J Clin Oncol. 2010;28:4307–15. [PMC free article] [PubMed]
40. Vreys V, David G. Mammalian heparanase: what is the message? J Cell Mol Med. 2007;11(3):427–52. [PMC free article] [PubMed]
41. Brabletz T. EMT and MET in metastasis: Where are the cancer stem cells? Cancer Cell. 2012;22:699–701. [PubMed]
42. Mina LA, Sledge GW., Jr. Rethinking the metastatic cascade as a therapeutic target. Nature Rev Clin Onc. 2011;8:325–32. [PubMed]
43. Romano P, Manniello A, Aresu O, Armento M, Cesaro M, Parodi B. Cell line data base: structure and recent improvements towards molecular authentication of human cell lines. Nucl Ac Res. 2009;37:D925–32. [PMC free article] [PubMed]